

Syllabus Description For Department of Chemical Engineering College of Engineering University of Basrah Basrah- Iraq

University of Basrah College of Engineering Department of Chemical Engineering

1. Introduction:

1.1 Overview of Department of Chemical Engineering

The Chemical Engineering Program in the College of Engineering at the University of Basrah was first accredited in 1980 and has maintained accreditation since that time. We have continued to make appropriate revisions in the curriculum to better serve student needs and to ensure success in their chosen careers. The chemical Engineering department curricular assessment and revision process has had a positive impact on the Chemical Engineering Program. The undergraduate study at the department is four years in length; from the moment of receiving the freshman year students whose average grades qualify them to join it up till to the graduation of the senior year students where they get their Bachelor of Science degree in Chemical engineering.

1.2 Program Educational Objective:

The Chemical Engineering curriculum requirements is designed to provide its graduates a solid educational foundation on which they can build successful and sustainable careers in chemical engineering or a related field. In particular, all graduates of the Chemical Engineering curriculum requirements will be prepared to do the following:

- 1. Graduates will be able to use chemical engineering principles to solve problems of practical importance to industry.
- 2. An ability to apply knowledge of mathematics, science, and engineering.

3. Graduates will be productive and informed citizens of society as well as of their professional community and will be positioned for a lifetime of success.

4- To be employed or pursuing an advanced degree in the field of chemical engineering or other related disciplines.

1.3 Program Curriculum

The Bachelor of Science (B.Sc.) in Chemical Engineering approved by the Department, and the student can choose it by the competition in the average of primary school. Throughout the first and second years all student take a general subject with the electrical and electronics engineering, and specialties starting from the third year of study by adding a pure specialties subjects.

1.4 Program Outcomes

The Chemical Engineering Student Outcomes are characteristics that a successful chemical engineer should have at the time of graduation, and are listed below.

1- Each graduate will have the ability to apply knowledge of mathematics, science and engineering fundamentals.

2- Each graduate will have the ability to design and conduct experiments, and to analyze and interpret experimental results.

3- Each graduate will have the ability to design systems, components, or processes to meet specified objectives within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability in chemical engineering.

4- Each graduate will have the ability to work as a member of multidisciplinary teams, and have an understanding of team leadership

5- Each graduate will have the ability to identify, formulate, and solve chemical engineering problems.

6- Each graduate will have the ability to communicate effectively in written, oral, and graphical forms.

7- Each graduate will have the ability to use the techniques, skills and modern engineering tools necessary for engineering practice.

8- Each graduate will have a thorough grounding in chemistry and a working knowledge of advanced chemistry, including organic and physical and either inorganic or analytical, depending upon their individual educational goals.

9- Each graduate will have a working knowledge of chemical process safety.

1.5 Program Outcomes (ABET):

As an integral aspect of this outcome, each graduate will demonstrate a working knowledge, including safety and environmental aspects, of material and energy balances applied to chemical processes; thermodynamics of physical and chemical equilibria; heat, mass, and momentum transport; chemical reaction engineering; continuous and stage wise separation operations; process dynamics and control; and chemical engineering economics.

- a. an ability to apply knowledge of mathematics, science, and engineering.
- b. an ability to design and conduct experiments, as well as to analyze and interpret data.
- c. an ability to design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability.
- d. an ability to function on multi-disciplinary teams.
- e. an ability to identify, formulate, and solve engineering problems.
- f. an understanding of professional and ethical responsibility.
- g. an ability to communicate effectively.
- h. the broad education necessary to understand the impact of engineering solutions in a global, economic, environmental, and societal context .
- i. a recognition of the need for and an ability to engage in life-long learning.
- j. a knowledge of contemporary issues; and.
- k. an ability to use the techniques, skills, and modern engineering tools necessary for engineering practice .

2. Course Description

The units are calculated such as, the theory hours (1 hour per semester = 1 unit), practical hours (2-3 hours per semester = 1 unit), and the tutorial hours (units = 0). Prerequisites, if any, are indicated at the course description. These have been established to assure an adequate and uniform background for students in advanced classes.

Course code is presented according to three requirements:

- 1- University requirement started by the letter U
- 2- Engineering College requirement is started by the letter E
- 3- Department Requirement (Chemical Engineering) is started by the letters CHE

Course code started by capital letters followed by number of 3-digits as following:

1st digit represents the class number

 2^{nd} digit represents the semester number

3rd digit represents the subject number

For examples:

Example: U112 represents University requirements, first year, first semester, and third subject.

Example: E212 represents Department Requirements, second year, first semester, and second subject.

3-Graduation Requirements:

Requirements	Units	Total hours/Year
University Requirements	6	90
College Requirements	22	420
Department Requirements	128	2535
Total	156	3045

4-University Requirements: 6 Units

	W/kn		W	eekly he	ours
Subject Code	Subject	Units	Th.	Prac.	Tut.
U111	Technical English I	2	2	-	-
U121	Technical English II	2	2	-	_
U211	Human Rights & Democracy	e e 2 👘	2	artn	tent
	Total			6	

No.	Subject	Subject	Units	W	eekly ho	ours
<i>INO</i> .	Code	Subject	Units	Th.	Prac.	Tut.
1	E112	Mathematics I	3	3	-	1
2	E122	Mathematics II	3	3	-	1
3	E116	Engineering Drawing I	1	1	2	-
4	E113	Workshop Technology	1	-	2	-
5	E123	Physics	2	2	-	-
		Total for 1 st Year	10	8	4	2
6	E212	Applied Mathematics I	3	3	-	1
7	E222	Applied Mathematics II	3	3	-	1
		Total for 2 nd Year	6	6	0	2
		Total for 3 rd Year	0	0	0	0
8	E411	Engineering Project I	2	-	2	-
9	E421	Engineering Project II	2	1	2	-
10	E422	Projects Management	2	1	-h.	2
		Total for 4 th Year	6	-	4	2
	0	Total	22	14	8	6
		10101	ZZ	1	28	

100

5- College Requirements: 22 Units

6- Department Requirements: 128 Units

Subject Code	Subject Title	Units	Weekly hours			
	When	29	Th.	Prac.	Tut.	
CHE114	Computer Programming 1	3	2	2	-	
CHE115	Analytical Chemistry	3	2	2	-	
CHE117	Chemical Engineering Principles 1	De	3 DA 1	tm	entr	
CHE118	Engineering Mechanics	2	2	-	-	

CHE124	Organic Chemistry	3	2	2	-
CHE125	Process Flow Sheeting	1	-	2	-
CHE126	Chemical Engineering Principles	3	2		1
CHE127	Strength of Materials	2	2	-	-
	Total for 1 ^{ss} Year	<u>20</u>	<u>15</u>	8	2
CHE213	Fluid Mechanics /	3	3	-	1
CHE214	Physical Chemistry	3	2	2	1
CHE215	Electrical Technologies	3	2	2	-
CHE216	Chemical Engineering Principles III	2	2		1
CHE217	Engineering Statistics	2	2	1	-
CHE218	Virtual BASIC	3	2	2	-
CHE222	Fluid Mechanics //	4	3	2	1
CHE223	Chemical Eng. Thermodynamics 1	3	3	•	1
CHE224	Physical Chemistry II	2	2	3.8-4	1
CHE225	Fuels and Sustainable Energy	2	2	-	-
CHE226	Chemical Engineering Principles IV	2	2	2	1
CHE227	MATLAB Engineering	3	2	2	-
CHE228	Environmental Pollution	2	2	1	1
	Total for 2 ^{na} Year	<mark>34</mark>	<mark>29</mark>	<u>10</u>	7
CHE311	Chemical Engineering Mathematics 1	3	3	1	1
CHE312	Heat Transfer 1	4	3	2	1
CHE313	Mass Transfer /	3	3	-	1
CHE314	Chemical Eng. Thermodynamics //	3	3	-	1
CHE315	Engineering Materials Properties	3	2	2	-
CHE316	Petrochemical Engineering	De	2	'tm	en
CHE317	Water Technologies	2	2	-	-

CHE321	Chemical Engineering Mathematics	3	3	-	1
CHE322	Heat Transfer II	3	3	-	1
CHE323	Mass Transfer	3	3	-	1
CHE324	Corrosion Engineering	2	2	-	-
CHE325	Engineering Economics	2	2	-	-
CHE326	Chemical Industries	2	2	-	-
CHE327	Reactor design 1	3	3		1
	Total for 3 rd Year	38	36	4	8
CHE412	Unit Operation	4	3	2	1
CHE413	Process Dynamics	3	3		1
CHE414	Equipment Design /	2	2	1	1
CHE415	Reactor Design //	3	3	. 1	1
CHE416	Petroleum Refinery /	3	3	-	1
CHE417	Numerical Methods	3	2	2	-
CHE423	Transport Phenomena	3	3	-	1
CHE424	Process Controland Instrumentation	4	3	2	1
CHE425	Equipment Design //	2	2	1	1
CHE426	Catalytic Reactor Design	2	2	1	1
CHE427	Petroleum Refinery II	4	3	2	1
CHE428	Simulation & Optimization	3	2	2	-
	Total for 4 th Year	<mark>36</mark>	<mark>31</mark>	<u>10</u>	9
	TOTAL	128	111	32 169	26

7- CHE Program: Curriculum

Typical degree program is shown in the following Tables for Chemical Engineering, where recommended CHE course plan by semester is presented.

First Year

First Semester

			Но	urs/We	ek	
No	CODE	SUBJECT	Th.	Prac.	Tut	Units
1	U111	Technical English I	2	-	-	2
2	E112	Mathematics I	3	-	1	3
3	E113	Workshop Technology	-	2	-	1
4	CHE114	Computer Programming 1	2	2	-	3
5	CHE115	Analytical Chemistry	2	2	-	3
6	CHE116	Engineering Drawing	-	2	-	1
7	CHE117	Chemical Engineering Principles	3	- 1	1	3
8	CHE118	Engineering Mechanics	2	-	-	2
		Tatal	14	8	2	10
		Total	1	24		18

Second Semester

			Ho	ours/We	ek		
No	CODE	SUBJECT	Th.	Prac.	Tut	Units	
1	U121	Technical English II	2	-	-	2	
2	E122	Mathematics II	3	-/	1	3	
3	E123	Physics	2	-	I	2	
4	CHE124	Organic Chemistry	2	2	I	3	
5	CHE125	Process flow sheeting	-	2	I	1	
6	CHE126	Chemical Engineering Principles II	3	-	1	3	
7	CHE127	Strength of Materials	2	-	-	2	
	Total III 14 4 2						

A

Second Year

First Semester

CODE U211 E212 CHE213	SUBJECT Human Rights& Democracy Applied Mathematics I	Th. 2 3	Prac.	Tut.	Units
E212	Applied Mathematics I	3	-	-	
		-	-	1	•
CHE213				1	3
C111213	Fluid Mechanics	3	-	1	3
CHE214	Physical Chemistry	2	2	1	3
CHE215	Electrical Technologies	2	2	-	3
CHE216	Chemical Engineering Energy Balance	2		1	2
CHE217	Engineering Statistics	2	-	-	2
CHE218	Virtual BASIC	2	2	-	3
	Total	18	6	4	21
С	HE217	HE217Engineering StatisticsHE218Virtual BASIC	HE217Engineering Statistics2HE218Virtual BASIC2	HE217Engineering Statistics2-HE218Virtual BASIC22Total186	HE217Engineering Statistics2-HE218Virtual BASIC22-

Second Semester

			Ho	ours/We	ek	
No	CODE	SUBJECT	Th.	Prac.	Tut.	Units
1	E221	Applied Mathematics II	3	-	1	3
2	CHE222	Fluid Mechanics II	3	2	1	4
3	CHE223	Chemical Eng. Thermodynamics	3	-	1	3
4	CHE224	Physical Chemistry II	2	-	1	2
5	CHE225	Fuels and Sustainable Energy	2	_	-	2
6	CHE226	Materials and Energy Balance	2	-	1	2
7	CHE227	MATLAB Engineering	2	2	άĒ	3
8	CHE228	Environmental Pollution	2		44.6	2
		Total	19	4	5	21
				28		

Third Year

First Semester

			Ho	ours/We	ek	
No	CODE	SUBJECT	Th.	Prac.	Tut	Units
1	CHE311	Chemical Eng. Analysis	3	-	1	3
2	CHE312	Heat Transfer	3	2	1	4
3	CHE313	Mass Transfer	3	-	1	3
4	CHE314	Chemical Eng. Thermodynamics II	3	1	1	3
5	CHE315	Engineering Materials Properties	2	2	-	3
6	CHE316	Petrochemical Engineering	2	ſ	-	2
7	CHE317	Water Technologies	2	-	-	2
		Total	18	4	4	
	1.11	44	1	26		20

Second Semester

			Ho	ours/We	ek	
No	CODE	SUBJECT	Th.	Prac.	Tut	Units
1	CHE321	Chemical Eng. Analysis II	3	- /	1	3
2	CHE322	Process Heat Transfer	3	-	1	3
3	CHE323	Mass Transfer II	3	-	1	3
4	CHE324	Corrosion Engineering	2	-	-	2
5	CHE325	Engineering Economics	2	-	-	2
6	CHE326	Chemical Industries	2	-	-	2
7	CHE327	Reactor design I	3	-	1	3
		Total	18	-	4	18
	C1		11101	22	3252	
	01	tennear Engineering De	par	Tune	111	

*Evaluation of Industrial training carried out by students after the second semester is to be evaluated.

Fourth Year

First Semester

]	Hours/Week		
No	CODE	SUBJECT	Th.	Prac.	Tut	Units
1	E411	Engineering Project		2	-	2
2	CHE412	Unit Operation	3	2	1	4
3	CHE413	Process Dynamics	3	-	1	3
4	CHE414	Equipment Design	2		1	2
5	CHE415	Reactor Design II	3	-	1	3
6	CHE416	Petroleum Refinery	3	-	1	3
7	CHE417	Numerical Methods	2	2		3
Total			16	6	5	
	1964			27	1.4	20

Second Semester

]	Hours/V	Veek	
No	CODE	SUBJECT	Th.	Prac.	Tut	Units
1	E421	Engineering Project II	1	2	-	2
2	E422	Projects Management & Ethics	2		-	2
3	CHE423	Transport Phenomena	3	-	1	3
4	CHE424	Process Control & Instrumentation	3	2	1	4
5	CHE425	Equipment Design II	2	-	1	2
6	CHE426	Catalytic Reactor Design	2	-	-	2
7	CHE427	Petroleum Refinery II	3	2	1	4
8	CHE428	Optimization and Simulation	2	2	1999 - Carlos - Carlo	3
	0	Total	17	8	4	
				29		22

Class		Seme	ester I		01-	Semester II		
Class	Th.	Prac.	Tut.	Units	Th.	Prac.	Tut.	Units
First Year	14	8	2	18	14	4	2	16
Second Year	18	6	4	21	19	4	5	21
Third Year	18	4	4	20	18	1	4	18
Fourth Year	16	6	5	20	17	8	4	22
	66	24	15		68	16	15	
Total	1	105	1	79	6	99	11	77
Total Units =	Total Units = $(79+77) = 156$							

COURSES SUMMARY

Summer Training

The **Chemical Engineering** curriculum requires students to complete one month of summer training at private industries or governmental firms. This training is a compulsory component of graduation requirements. It is supervised by the Summer Training Committee of the department.

8- CHE Curriculum / Units Requirements

- 4 Years Program (Full Time Study)
- 154 Units for the Chemical Engineering included:

-Mathematics and basic Science: 18 Units

- Engineering Topics: 98 Units.

-General Education: 12 Units.

9- How the Curriculum Aligns with the Program Educational Objectives

The faculty has complete authority to define, revise, implement, and achieve program educational objectives. Input is required from the students, alumni, and the

employers of our alumni in the implementation of program objectives. The major role of the faculty is to create, revise, and evaluate subjects for the program as well as define and revise program educational objectives and ensure achievement of student outcomes. Therefore, the above process ensures alignment of the curriculum with Program Educational Objectives as shown in various tables.

The **Chemical Engineering** department insures that the students receive all the engineering analysis within the context of engineering program. At our faculty meetings, the discussion is possible subjects to be introduced in the different subjects and brainstorm on ways to bring engineering program and open-ended problems into our subjects.

Program Outcomes: For the purpose of achieving its objectives, the electrical engineering department has developed eleven Program Outcomes (POs) as an initial set of POs. These outcomes are, in effect, what the students expected to know and achieve post-graduation. The following Table shows these program outcomes:

OUTCOMES	Code
PO1: an ability to apply knowledge of mathematics, science, and engineering fundamentals.	а
PO2: an ability to outline and conduct experiments as well as analyze and interpret data.	b
PO3: an ability to design an integrated system and its various components and processes, within realistic economic, environment, social, political, ethical, health and safety, manufacturability, and sustainability constraints.	С
PO4: an ability to function on multi-disciplinary teams to analyze and solve problems.	d
PO5: an ability to identify, evaluate and solve engineering problems.	e
PO6: an understanding of the responsibility of engineers to practice in professional and ethical manner at all times.	f
PO7: an ability to communicate effectively using oral, written, and graphic forms.	g
PO8: the broad education necessary to understand the potential impact of engineering solutions on society and the environment.	h
PO9: an understanding of the need for up-to-date engineering tools and other knowledge acquired through life-long learning.	
PO10: knowledge of contemporary issues related to engineering.	j

PO11: an ability to use modern engineering tools, skills and design techniques necessary k for the practice of engineering.

First Year

First Semester

<u>First Year</u>					
First Semester					
Sul	oject: Human Rights and Democracy	Theoretical: 2 hr/wk			
Co	de: U111/1 st Semester	Practical:			
Cla	ss: 1 st Year	Tutorial:			
Pre	e-requi <mark>sit</mark> e: None	Units: 2			
Co	urse S <mark>y</mark> llabus				
1	Introduces students to the philosophic and politic concept of human rights	cal background of the			
2	² Discusses important documents as part of the history of the development of human rights theories.				
3	Examines important issues in current political and human rights.	nd ethical debates about			
4	4 Reviews core legal documents and the work of the most important governmental and nongovernmental institutions currently involved in human rights protection and promotion				
5	Examines at least one current problem area in h	uman rights protection.			
References: 1-					

First Year

First Semester

Sul	bject: Mathematics I Theoretical: 3 hr/wk				
Co	Code: U111/1 st Semester Practical:				
Cla	Class: 1 st Year Tutorial: 1 hr/wk				
Pre	Pre-requisite: None Units: 3				
Co	urse Syllabus :				
1	General review (Coordinates, slop, straight line, equation of circle, conic section).				
2	Composition of functions, function of largest integer, sign of function.				
3	3 Inequalities, absolute values, inverse functions.				
4	4 Composite numbers (addition, subtraction, multiplication, root, graph)				
5	Function differentiation (1 st , 2 nd , chain differentiation).				
6	Implicit differentiation and application of derivatives .				
7	Graph of maxima and minima, Continuity, range and domain.				
8	Limits, 1 Hopital's rule.				
Ref	ferences:				
	1-Erwin Kreysig, Advanced Engineering Mathematics, 8e, John Wiley and Sons,				

2- Wylie C.R and L.C. Barrett, Advanced Engineering Mathematics, McGraw Hill

First Year

First Semester

Sul	oject: Computer Programming I	Theoretical: 2 hr/wk			
Co	Code: CHE114/1 st Semester Practical: 2				
Cla	Class: 1 st Year Tutorial: -				
Pre	e-requisite: None	Units: 3			
Co	urse Syllabus :				
1	Definition of the computer, components, method of operat diagram of the components and units of the computer	ion, simple			
2	² Files: definition, types, coding, explanation of the dos system and its internal and external orders.				
3	³ Introduction to the Windows system: desktop, use of the mouse, computer, closing of the windows, temporary closing, minimizing and maximizing any window, creation of new folder, selection of a folder, finding a file or a folder, copy from a file to another.				
⁴ Program: how to start, printing, shut down, delete of the disk, arrangement of the icons, run, help.					
الكتب المنهجية والمساعدة تعلم الحاسب الشخصي للمؤلف د. حسن هادي الزيادي					

First Year

Su	bject: Analytical Chemistry	Theoretical: 2 hr/wk				
Co	Code: CHE115/1 st Semester Practical: 2					
Cla	Class: 1 st Year Tutorial: - hr/wk					
Pre	e-requisite: None	Units: 3				
Co	urse Syllabus :					
1	Stoichiometric calculations of chemical analysis Ma the chemical equation, chemical coefficient, calcula to the concentrations of solutions, polarity, normalit density	tion in relation				
2	Equilibrium in the acids and bases, pH for the acidic solutions, graphs of titration, indicators of bases and acids, choice of indicaters and buffer solutions.					
3	Equilibrium in precipitation, solubility, precipitation and partial precipitation.					
4	Systems with comparative equilibrium, how to rem	ove precipitates				
5	 Analysis using oxidation and reduction, equations of oxidation and reduction, indicators of oxidation and reduction. 					
⁶ Equilibrium in the oxidation and reduction reactions, electromotive force, use of the half cell potentials, effect of concentration on the potential of the cell (Nernst eq.), measure of concentration by potential of the cell .						
Re	ferences: 1- Quantitative analysis ,by Edward	Department				

2- Quantitive analytical chemistry, by flaschka.

First Year

First Semester

Subject: Engineering Drawing	Theoretical: - hr/wk
Code: E116/1 st Semester	Practical: 2 hr/wk
Class: 1 st Year	Tutorial: - hr/wk
Pre-requisite: None	Units: 1
Course Syllabus :	15/1
1 Introduction to the drawing tools and how to use	e them.
2 Composition of the engineering drawings.	1314
3 Lettering numbers, dimensions	3 4
4 Projection	2 6
5 Sectioning	151
6 Isometric drawing	No 1
References:	NU
1- Engineering Drawing, by A.W.Bound.	

First Year

Subj	ect : Chemical Engineering Principles I	Theoretical: 3 hr/wk		
Cod	Code: CHE117/1 st Semester Practical:			
Class	Class: 1 st Year Tutorial: 1 hr/wk			
Pre-	Pre-requisite: None Units: 3			
Cour	se Syllabus :			
	Introduction to engineering calculations, units, Units, dimensions and conversions, Temperatu scales, Composition of mixtures, Principles of s combination Composition of mixtures, Principles of stoichio Nature of balances: Concept of a balance. Input Steady-state considerations. Black box approact interconnections. Familiarization with flow she Mass balances for items of plant, Choice of bass balances. Overall and component balances, Lin reactants	ere and Pressure stoichiometric metric combination. t-output relationships. th. Sub-systems and sets. sis/datum for		
4	4 Balances for systems with recycle, purge and by-pass streams.			
5	 5 Mass balances for reactive processes. Mass balances for unit operations .Conversion, yield , selectivity, purge, percent of completion in chemical reactions 			
6	Balances for batch and continuous plant.	gDepartment		

References:

- 1- Elementary principle of chemical Processes. by ,Richard M. Felder
- Basic principles and calculation in chemical engineering. David. m.Himmelblau

First Year

First Semester

Subject : Engineering Mechanics

Code: CHE118/1st Semester

Class: 1st Year

Pre-requisite: None

Course Syllabus :

1 Principles of statics, introduction

2 Resultant of force systems, systems with two dimensions.

3 Resultant of force systems, momentum and coupled momentum.

4 Resultant of force systems, resultant of forces.

5 Equilibrium of force systems, equilibrium of forces in two directions.

6 Equilibrium of force systems, equilibrium of forces

7 Force system in space, systems with three dimension

8 Force system in space, resultant forces

9 Force system in space, equilibrium.

10 Friction, forces of friction.

11 Friction.

References:

Theoretical: 2 hr/wk

Practical: ---

Tutorial: -

Units: 2

Theoretical: 2 hr/wk

Practical: ---

Tutorial: ---

Units: 2

1- Millard F. Beatty. Principles of Engineering Mechanics: Volume 1:

Kinematics

<u>First Year</u>

Second Semester

Subject: Technical English

Code: U121/2nd Semester

Class: 1st Year

Pre-requisite: None

Course Syllabus :

1 This course is designed to enable the students to achieve academic oral and written communication to the standard required at university level. The course integrates all the language skills with emphasis on writing, and it stimulates students' imagination, and promotes personal expression. Students, in this course, are trained to apply critical thinking skills to a wide range of challenging subjects from diverse academic disciplines. Course activities include writing various types of academic essays, acquiring advanced academic vocabulary, and getting involved in group discussions and debates. In addition, the course also includes other skills to consolidate the main skills, such as further readings and use of the Blackboard Suite.

Refrences:

1-

First Year

Second Semester

S 1	viant . Mathematica II	Theoretical: 3 hr/wk				
Su	oject : Mathematics II	Theoretical: 5 nr/wk				
Co	Code: E122 /2 nd Semester Practical:					
Cla	Class: 1 st Year Tutorial: 1 hr/wk					
Pre	e-requisite: Mathematics I	Units: 3				
Co	urse Syl <mark>la</mark> bus :					
1	Trigonometric functions (derivative, graph, limit functions).	s, graph of inverse				
2	Hyperbolic functions (Derivatives, graphs, inver	rse functions).				
3	Integration (definite, indefinite. Area under the curve)					
4	Methods of integration (substitution by trigonometric function, partial fractions, integration by fraction).					
5	Application of integration (volumes, length of curve, surface of revolution). Applications of Integrals : Areas between curves, Methods of finding volume : Slicing, Solids of revolution, Cylindrical shell, Lengths of plane curves, Areas of surface of revolution, Moments and Center of mass, Improper integrals					
6	Transcendental function (natural logarithm, expo	onential function, graphs).				
7	Improper integrates.	ASPA				
8	Differential equations					
9	Determinates and matrices.					
	References: 1-Erwin Kreysig, <i>Advanced Engineering</i> and Sons,					

First Year

Second Semester

Su	bject : Physics	Theoretical: 2 hr/wk				
Co	de: E123 /2 nd Semester	Practical:				
Cla	ass: 1 st Year	Tutorial: 0				
Pre	Pre-requisite: None Units: 2					
Co	urse Syllabus :					
1	density, magnetic fields, Ampére's law, Faraday's law, magnetic polarization, bound current, magnetic propert (para, dia and ferro), boundary condition of B and H superconductor	gnetic potential, ies of materials I, basic idea of				
	Displacement current, Maxwell's equations for free sp (dielectric and conductor),Electromagnetic waves, Poynti					
3	³ Origin the refractive index, Interference: division of wave-front and division of amplitude; diffraction: Fraunhoffer, Grating, Resolving power (grating, prism, telescope and microscope); polarization: Phenomena of double refraction, Nicol prism, optical activity Production and analysis of plane, circular and elliptical polarized light, Frenels theory of optical activities and Polarimeters.					
4	Fiber optics and photonics: Fundamental ideas about opt of fibers, Total Internal Reflection (TIR), critical angle, a and application, basic principal of Laser and Holography a ideas about photonics	cceptance angle				
5	Electrostatics: electric fields, potentials, Gauss's law, electrostatics: polarization, bound charges, linear dielectrics dielectrics, electric displacement, boundary condition of and energy of electrostatics, Laplace's equation and uniquimage theory	s and force on E and D, work				
Ke	frences: 1-Modern Physics: Author Beiser					

First Year

Second Semester

Su	bject : Organic Chemistry	Theoretical: 2 hr/wk
Co	de: E122 /2 nd Semester	Practical: 2 hr/wk
Class: 1 st Year		Tutorial: - hr/wk
Pre	e-requisite: None	Units: 3
Co	urse Syllabus :	
1	Hydrocarbons aliphatics, ring, olifenes, acytelines, a bonding of the hydrocarbon compounds, Thermal cr hydrogenation, reduction, Special reactions: oxidation addition, substitutions, nitation, sulphonation, halogo polymerization.	acking process, on and combustion,
2	Halides, fluorides, chlorides, bromides, iodides, process of halogenations of hydrocarbons by ionic method of free radicals, addition, substitutions.	
3	Alcohols and phenols	0
4	Ethers	8
5	Aldehydes and ketones	811
6	Carboxylic acids, esters, amino-acids, amides.	
7	Amines and some important derivatives.Practical or physical properties of liquid and solid organic comp point by normal distillation and partial distillation, re substitution and oxidation, preparation of aspirin, ac	ounds, boiling eactions of
Re	frenceses:	Department
1- Morrison & Boyd, Organic Chemistry, Prentice-Hall		
2- Bahl & Bahl, Advanced Organic Chemistry,		

<u>First Year</u>

Second Semester

Sul	bject : Process Flow Sheeting	Theoretical: -	
Co	Code: CHE125 /2 nd Semester Practical: 2 hr/		
Cla	Class: 1 st Year Tutorial: - hr/wk		
Pre	Pre-requisite: None Units: 1		
Co	urse Syllabus :		
1	Essential flow diagrams		
2	block flow diagrams (BFD)		
3	process flow diagrams (PFD),		
4	piping & instrumentation diagrams (P&ID),	1384	
5	Equipment descriptions and standard notations,	- A.	
6	General Design Factors and Specifications	()	
7	Rules of thumb in design;	2113	
8	Definition of project Establishment of design basis; ASTM specifications for: Seamless / ERW pipes, pipe fittings, flam fasteners, materials for valves. Gaskets: Functions and prop gaskets	nges, and	
9	Piping System Design Types of Valves, Control Valves, Sa Constructional features, Criteria for selection. Piping comp valves and other pressure relieving devices, constructional selection criteria.	onents. Safety	
Ref	ferences:		
1. J	.M.Coulson & J.F.Richardson, Chemical Engineering, Vol.6	, 3rd Edn,	
2. F II, 1	E. Ludwig, Applied Process Design for Chemical & Petroche II,	emical Plants, Vol I,	

First Year

Second Semester

Subje	ct : Chemical Engineering Principles II	Theoretical: 3 hr/wk	
	Code: CHE126 /2 nd Semester Practical: -		
Class	Class: 1 st Year Tutorial: 1 hr/wk		
Pre-re	Pre-requisite: Chemical Engineering Principles I Units: 3		
Cours	e Syllab <mark>u</mark> s :		
1	Ideal gas, state equation if ideal gas, mixture of id	eal gases.	
	Real gases: pure & mixed with applications to ma	terial balances	
2	focus on z factors, introduce equations of state and solutions.	l trial & error	
3	Vapor pressure: Antoine equation, Clausius-Clape and steam tables.	eyron equation,	
3	Mixture of gas and saturated vapor.	S	
4	⁴ Gas–Vapor Mixtures: relative saturation, relative humidity, dew		
	point temperature, dew point pressure, condensation, saturation and drying problems		
5	Vapor–Liquid Equilibrium: Raoult's Law	~	
Refere	ences:		
1-Richard M. Felder, Elementary principle of chem. process			
2- Da	2-David .Humbllo,Basic principles and calculation in chemical engineering		

First Year

Second Semester

Sul	oject : Strength of Materials	Theoretical: 2 hr/wk
Co	de: CHE127 /2 nd Semester	Practical: - hr/wk
Class: 1 st Year Tutorial		Tutorial: - hr/wk
Pre	-requisite: Engineering Mechanics	Units: 2
Со	arse Syllabus:	
1	Analysis of structure, structures of machines.	
2	Centroids and centers of gravity, center of gravity of l	engths and reas
3	Centroids and centers of gravity, center of gravity of	volumes.
4	Centroids and centers of gravity, composite figures.	
5	Moment of inertia.	1314
6	Strength of materials definitions.	8 11
7	Simple stress	191
8	Shear stress.	SII.
9	Stress in cylinders.	0//
10	Simple strain	
11	Thermal stress	13
12	Strength of materials, deformation in beams.	6-1
13	Equations of stress and momentum in beams	
14	Curves of stress and momentum in beams.	anautmont
	References:	eburmen
	1-Millard F. Beatty. Principles of Engineering Me	chanics:

Second Year

Subje	ect : Engineering Management and Ethics	Theoretical: 2 hr/wk
Code	:E211/1 st Semester	Practical:
Class	: 2 nd Year	Tutorial: -
Pre-r	equisite: None	Units: 2
Cours	e Syllabus :	
1	Management theory and practice: functions of Hawthorne Experiments, leadership styles and theories	
2	Marketing management: Marketing management process, product life cycle and marketing strategies. Operations management: Productivity and work study, operations strategy, statistical process control, Taguchi's parametric design, Quality function deployment, Introduction to TQM and ISO 9000. inventory costs, ABC	
3	classification, EOQ, P and Q inventory system management: project planning and feasibility scheduling methods	
4	Engineering profession: Ethical issues in Engineering Conflicts between business demands and prof	
5	Social and ethical responsibilities of Technology professional ethics. Whistle blowing and beyo	
Refre	nceses:	
	Chemical Engineering	g Department

Second Year

First Semester

Sub	oject : Applied Mathematics I	Theoretical: 3 hr/wk	
Co	de: E212/1 st Semester	Practical:	
Cla	Class: 2 nd Year Tutorial: 1 hr/wk		
Pre	-requisite: Mathematics II	Units: 3	
Cou	arse Syllabus:		
1	Conic sections(review, transform of axes, rotation o	f axes)	
2	Polar coordinates	11	
3	Hyperbolic functions (differentiation and integration).	
4	Vectors (vectors in space, line equation in space, eq	uation of plane).	
5	Series: Infinite series, Oscillating and Geometric Convergence, Divergence. Tests of Convergence: Indivergence, Integral test, Comparison Test, Limit (Ratio test, nth root test (Cauchy root test), Al Absolute and Conditional convergence. Power Series and its convergence, Radius and interval of conver- term differentiation, Term by term integration, Pre- series, Taylor and Maclaurin series, Convergence of Error estimates, Taylor's Theorem with remainder	nth Term test of Comparison test, Iternating series, ies: Power series rgence, Term by roduct of power	
	References: 1- Calculas by Mint.		
1- Calculas by Mint.			
2-0	2- Calculas by Edward.		

Second Year

Su	bject : Fluid Mechanics I	Theoretical: 3 hr/wk	
Co	de: CHE213/1 st Semester	Practical:	
Cla	Class: 2 nd Year Tutorial: 1 hr/wk		
Pro	Pre-requisite: None Units: 3		
Co	urse Syllabus:		
1	 Concept of fluids and fluid properties; Stress in a fluid; Newtons Law of viscosity Fluid statics Basic physical Laws in Fluid Mechanics; Conservation of Mass, Linear Momentum, Angular Momentum and Energy; The Bernouli's Equation and its application. Dimensional analysis Dimensional analysis by Rayleigh's method and Buckingham's method, Dimensionless numbers. 		
2	Internal incompressible viscous flow: I fluid in circular pipe; laminar flow for Ne equation; introduction to turbulent flow in consideration in pipe flow, relation betwe Bernoulli's equation-kinetic energy corre Fanning and Darcy, Moody diagram; maj valves, schedule no, equivalent diameter.	ewtonian fluid; Hagen-Poiseullie n a pipe-Prandtl mixing length; energy een average and maximum velocity, ection factor; head loss; friction factor- jor and minor losses; Pipe fittings and	
3	Flow measurement: Introduction; gener Orifice meter; Venturimeter; Weirs, conc velocity measurement: Pitot tube. Hot wir Resistance of immersed bodies: Introdu variation of drag coefficient with Reynold body; packed bed; concept of sphericity; factor.	ept of area meters: rotameter; Local re anemometer, mass flowmeter. action; concept of drag and lift;; ds number; stream-lined body and bluff	
References: 1- Fluid Mechanics. by victor. 2- Fluid Mechanics and hydraulics, by Jack.			

Second Year

Su	bject : Physical Chemistry I	Theoretical: 2 hr/wk	
Co	de: CHE214/1 st Semester	Practical: 2 hr/wk	
Class: 2 nd Year Tutorial: 1 hr/wk		Tutorial: 1 hr/wk	
Pr	Pre-requisite: None Units: 3		
Co	urse Syllabus:		
1	Maxwell's distribution of molecular velocities. Col mean free path. Deviation from ideal behaviour – v of state.Liquid state – Equation of state of liquids, s vacancy model, vapour pressure, heat of vapourisat	an der Waals equation structure of liquids –	
2	2 PHASE RULE AND SOLUTIONS: Definition of terms, derivation of phase rule, application of phase rule to three component systems: acetic acid - chloroform- water system, system consisting of two salts and water. Raoult's law, ideal and non-ideal solutions, vapour pressure and boiling point diagrams of completely miscible binary solutions, completely immiscible liquids: steam distillation and its application, solubility of partially miscible liquids, solubility of gases in liquids: factors affecting solubility, Henry's law. Vapour pressure lowering, Osmosis and Osmotic pressure, boiling point elevation, freezing point depression, determination of molecular weight from colligative properties		
3	Thermo-chemistry. Second law of thermodynamics Chemical equilibrium of homogeneous and heterog Thermodynamic treatment of equilibrium constant. and pH scale	geneous reactions.	
References: 1- Physical Chemistry, by Barow.			

Second Year

Su	bject : Electric Technology	Theoretical: 2 hr/wk
Co	de: CHE215/1 st Semester	Practical: 2 hr/wk
Cla	ass: 2 nd Year	Tutorial: - hr/wk
Pre	e-requisite: None	Units: 3
Со	urse Syllabus:	
1	Theory of electricity, idea of electric potential, resistances In series and parallel, equivalent resistances In series and parallel, equivalent resistances in circuits. Kirchoff's law, voltage and current divider	ice, open and short
2	Work, power and energy, heating effect of electric of of electric heating, thermal efficiency.	current, Joule's law
3	Electrical instruments and measurements, DC potentiometer, whetstone bridge, Universal bridge, moving-Oil instrument, extension of range	
4	AC fundameneatals, generation of alternating volta equations of the alternating voltages and currents)s complex waveforms)>RMS value of a complex wa from factor and peak factor, vector representation o quantities, series and parallel AC circuits .	imple and ve, average value,
5	Semiconductors, PN.junction diode, the ideal, real c circuits with DC and AC voltage sources, logic gate	
6	Electromagnetic circuits, absolute and relative perm medium, law of magnetic circuits, B-H curve	neability of a
1-`	ferences: Vincent Del Toro, "Electrical Engineering Fundamer Cotton, H., "Advanced Electrical Technology"	

Second Year

First Semester

Subject : Virtual Basic	Theoretical: 2 hr/wk	
Code: CHE218/1 st Semester	Practical: 2 hr/wk	
Class: 2 nd Year	Tutorial: - hr/wk	
Pre-requisite: None	Units: 3	
Course Syllabus:		
1 INTRODUCTION TO VB 6.0: VB Environm Toolbars, Tool Box,Project explorer,Propertie designer,Form layout		
2 VB The language:Variable , Constants, Arrays, Procedures, Functions, Control Flow Statements, Looping , nesting		
3 Managing Form:Form Basics,Form Events,Form Methods	Properties,Form	
4 Managing Menus: Creating and modifying time, Programming menu commands, Shortcut Keys,		
5 Drag & Drop operations: Drag mode property,Dr Over Method Mouse Conflicts	Drag & Drop operations: Drag mode property, Drag Drop & Drag	
6 Design a Project using MDI form, common dialog co text box.	ontrol and rich	
7 Creating the simple programs based on Chemical En VB.	ngineering using	
References:		
1- Jesse Liberty, Learning Visual Basic .		

Second Year

First Semester

Su	bject : Chemical Eng. Energy Balance	Theoretical: 2 hr/wk	
Code: CHE216/1 st Semester Prac		Practical: - hr/wk	
Class: 2 nd Year Tutorial: 1 hr/wł		Tutorial: 1 hr/wk	
Pr	e-requisite: None	Units: 2	
Co	urse Syllabus:		
1	Energy and Energy balance: energy balance for close system. Mechanical energy balance	sed and open	
2	Energy balance, general review on types of energy a thermodynamics, total energy balance, heat capacity vaporization, Enthalpy calculation.Psychrometric cl	y, la <mark>tent</mark> heat of	
3	Energy balance with reaction: heat of reaction and h combustion. Heat of reaction method, heat of forma		
References: 1-Richard M. Felder, Elementary principle of chemical processes			
2-	2-David., Basic principles and calculation in chemical engineering		

Chemical Engineering Department

BASRAM

Second Year

Sul	bject : Engineering Statistics	Theoretical: 2 hr/wk	
Co	de: CHE217/1 st Semester	Practical: - hr/wk	
Cla	Class: 2 nd Year Tutorial: - hr/wk		
Pre	e-requisite: None	Units: 2	
Co	urse Syllabus:		
1	Measure of Central Tendency and Dispersion Statistics A Mode, Quartiles, Range, Moments, Skewness & Kurtosis Deviation, Mean Deviation, Standard Deviation, Variance coefficient, Practical Significance in related problems.	, Quartile	
2	Statistical Inference and Testing of Hypothesis Introducti Types of Estimates, Confidence interval, Tests of Hypoth distribution/test, one tails & two tails tests. Application in problems	nesis, Chi-Square	
3	Curve Fitting :Introduction, fitting of a first and second de fitting of exponential and logarithmic curves related prob of least squares, Second order Statistics & Time series no	lems, Principle	
4	Simple Regression & Correlation: Introduction, Scatter d Correlation & its Coefficient, Regression lines, Rank Cor Coefficient, Probable Error (P.E), Related problems.		
5	Statistical Inference and Testing of Hypothesis Introduction Types of Estimates, Confidence interval, Tests of Hypoth distribution/test, one tails & two tails tests. Application in problems.	esis, Chi-Square	
6	Probability Distributions Introduction, Discrete probabilit Binomial, Poisson, Hyper geometric & Negative binomia Continuous probability distribution, Uniform, Exponentia distributions & their practical significance.	l distributions.	
	ferences: Z.R.Lazic, Design of experiments in chemical engineering		

Second Year

Subject : Applied Mathematics II	Theoretical: 2 hr/wk	
Code: E221/2 nd Semester	Practical: - hr/wk	
Class: 2 nd Year	Tutorial: 1 hr/wk	
Pre-requisite: None	Units: 3	
Course Syllabus:		
¹ Partial differentiation (partial derivatives, approximinims of functions with more than one variable).		
² Multiple integrals (for rectangular areas and nonre- integral, change of multiple integral to polar coordin		
³ Differential equations and their classification, fo equations. Differential equations of first order. M differential equations of first order and first-degre homogenous equations, equations reducible to differential equations, integrating factor, linear equations, orthogonal trajectories in Cartesian a application of first order differential equations. differential equations	Methods of solution of ee: Separable equations, o homogenous, exact r equations, Bernoulli and polar coordinates,	
 ⁴ Higher order linear differential equations: Homogen order n with constant coefficients, auxiliary/ch Solution of higher order differential equation acc auxiliary equation. Non-homogenous linear equati finding particular integral. Cauchy Euler Equation. differential equations. 	aracteristics equations. cording to the roots of ions. Working rules for	
References: 1- Calculas by Mint.		

Second Year

Su	bject : Fluid Mechanics	Theoretical: 3 hr/wk	
Co	de: CHE222/2 nd Semester	Practical: 2hr/wk	
Cla	ass: 2 nd Year	Tutorial: 1 hr/wk	
Pr	e-requisite: None	Units: 4	
Co	urse Syllabus:		
1	Pumps, pumps relations with centrifugal force, pur series, positive displacement pumps, pump efficient affecting the selection of pumps		
2	Flow and pressure measurements . Flow measurer general equation for internal flow meters; Orifice r Venturimeter; Weirs, concept of area meters: rotan velocity measurement: Pitot tube. Hot wire anemo flowmeter. Introduction; concept of drag and lift;; coefficient with Reynolds number; stream-lined bo packed bed; concept of sphericity; Ergun equation, factor.	neter; neter; Local meter, mass variation of drag ody and bluff body;	
3	Fluid flow in the Presence of solid particles Practic measurement of air water flow, measurement of pr packed pipes, measurement of the free falling veloc of the viscosity, Measurement of the pressure drop fittings because of friction, moment of impact.	essure drop in the city. Measurement	
Re	References:		
1- Fluid Mechanics, by Victor			
2-2	2- Fluid Mechanics and hydraulics, by Jack.		

Second Year

Su	bject : Chemical Eng. Thermodynamics I	Theoretical: 3 hr/wk	
Co	de: CHE223/2 nd Semester	Practical: - hr/wk	
Cla	ass: 2 nd	Tutorial: 1 hr/wk	
Pre	e-requisite: None	Units: 3	
Co	urse Syllabus:		
1	Fundamental concepts and definitions - closed, open and intensive and extensive properties - path and state function and irreversible process.		
2	internal energy- enthalpy - heat capacity - first law for c flow processes - applications -P-V-T behavior of pure fl and ideal gas processes - equations of state - vander Was Redlich-Kwong equation, Virial equation - principle of states - critical and pseudo critical properties - Compres	uids - ideal gases als equation, corresponding	
3	Thermodynamic properties of pure fluids - Gibbs free en function - Maxwell's equations - Clapeyron equation - e capacity relationships - equations for entropy, internal en in terms of measurable quantities - effect of temperature H and S - relationship between CP and CV - effect of pr on heat capacities - Joule-Thomson coefficient - Gibbs - equation - method of Jacobians - thermodynamic diagram	hergy, work entropy-heat nergy and enthalpy e and pressure on U, ressure and volume Helmholtz	
4	Fugacity and activity of pure fluids - selection of standa determination of fugacity of pure gases and liquids - effe and pressure on fugacity and activity.	rd state -	
Re	References:		
 1- Smith J. M. & Van Ness H.V., Introduction to Chemical Engineering Thermodynamics, McGraw Hill 2. Narayanan K. V., A Textbook of Chemical Engineering Thermodynamics, Prentice-Hall 			

Subject : Physical Ch	emistry I	Theoretical: 2 hr/wk
Code: CHE224/2 nd Se	mester	Practical: - hr/wk
Class: 2 nd Year		Tutorial: - hr/wk
Pre-requisite: None		Units: 2
Course Syllabus:		
conduction. Electric theory. Electrocher cells. Application of	nical cells. Thermody	on. Interionic attraction namics of electrochemical Ionic equilibria. Buffer
gases by solids, Fro	eundlich adsorption iso	s of adsorption, adsorption of otherm, Longmuir's theory of dsorption (quantitative
References:		
1- Phys <mark>ic</mark> al Chemistry,	b <mark>y B</mark> arow.	10ª 2 10

Second Year

Su	bject : Fuels and Sustainable Energy	Theoretical: 2 hr/wk
Co	ode: CHE225/2 nd Semester	Practical: - hr/wk
Cl	ass: 2 nd	Tutorial: - hr/wk
Pr	e-requisite: None	Units: 2
Co	ourse Syllabus:	
1	Introduction to fuels, properties of fuel oil, coal and gas, storage preparation of fuels, principles of combustion, combustion of of Fluidized Bed Combustion Boilers.	
2	Furnaces and Waste Heat Recovery: Classification, general fuel measures in furnaces, excess air, heat distribution, temperature control, waste heat recovery.	
3	Energy conversion technologies in industrial energy systems: or technologies and engineering thermodynamics for process utility pumps, steam turbine combined heat and power (CHP) and gas	y boilers, h <mark>ea</mark> t
4	Energy conversion performance of such systems for given energy process parameters and given process head load.	gy conversion
5	Greenhouse gas emissions consequences of energy efficiency m industry. Greenhouse gas emissions from industrial energy syste of industrial energy systems considering future costs associated gas emissions.	ems. Optimisation
6	Potential for greenhouse gas emissions reduction in industry. O policy instruments and their impact on industrial energy system	•••
References: 1-Goldmberg J., Johansson, Reddy A.K.N., Energy for a Sustainable World, John Wiley 2. Bansal N.K., Kleeman M. & Meliss M., Renewable Energy Sources & Conversion Tech., Tata McGraw Hill.		

Second Year

Second Semester

Su	bject : Materials and Energy Balance	Theoretical: 2 hr/wk	
Co	de: CHE226/2 nd Semester	Practical: - hr/wk	
Cla	ass: 2 nd	Tutorial: 1 hr/wk	
Pre	e-requisite: None	Units: 2	
Co	urse Syllabus:		
1	Multiple unit system involving reaction, recycle, and	purge	
2	Material balances with chemical reactions and multip	ole components	
	including use of algebraic techniques. Simultaneous energy balance.	material and	
3	Flow sheets, material and energy balance for comple	te projects.	
4	Unsteady state Material and energy balance.	3 4	
Re	ferences:	S 14	
1-]	1- Elementary principle of chemical process, by Richard M. Felder,		
2- Basic principles and calculation in chemical engineering, by David .himmelblau .			
	OF ENGIN		

Second Year

Second Semester

Su	bject MATLAB Engineering	Theoretical: 2 hr/wk
Co	ode: CHE227/2 nd Semester	Practical: 2 hr/wk
Cl	ass: 2 nd	Tutorial: - hr/wk
Pr	e-requisite: None	Units: 3
Co	ourse Syllabus:	
1	Introduction to Matlab: Arithmatic Expressions, Mathema Logical Operators, Relational Operators, Matrices, Worki polynomials (manipulating polynomials, derivatives roots, Linear Equations, Graphics - 2-D and 3-D plots, Log-log a - Histograms, Writing in an m-file, function calling in mat Matlab (with examples) - if, else, elseif, while, for, switch,	ng with eigen values), and semi-log plots lab, Functions in
2	Numerical Analysis using Matlab :- Bisection method, - R - Newton Raphson method	
3	Numerical Solutions of ODEs using Matlab - Euler Metho Method - Runge Kutta Method	d - Modified Euler
4	System of Linear Equations - Gauss Elimination Method - Elimination Method	Gauss Jordan
5	Numerical Integration using Matlab - Simpson's Rule - W Trapezoidal Rule	eddle's Rule -
6	Statistical Techniques - Basic statistical data analysis techni Regression - Curve fitting techniques - Statistical distribution	-
Re	ferences:	
	1- Palm, Introduction to MATLAB (R) for Engineers, Third	d Ed., 2011

2- Alkis Constantindes, Numerical Methods for Chemical Engineers with MATLAB Applications / Edition 1

Second Year

Su	bject : Environmental Pollution	Theoretical: 2 hr/wk
Co	ode: CHE228/2 nd Semester	Practical: 2 hr/wk
Cl	ass: 2 nd	Tutorial: - hr/wk
Pr	e-requisite:	Units: 2
Сс	ourse Syllabus:	
1	Basics of environment Biosphere, Atmosphere, Lithosphere, Hydro Population growth, Mathematical Models, Resources - non-renewal concepts of Sustainable Development.Environmental degradation: Water pollution (sources, decomposition of organic compounds, eff	ble and renewable, fect of pollution on
	lakes). Water Pollution and Control Pollutants of water, their origin Chemical, Bactriological and Biological parameters, standard limits, determination of water pollutants.	, ideas of
2	Water pollution (specific measurement of water, COD, BOD) Water classification and characterization of water pollutants, sources, cause pollution; control processes : physical- design of equalization tanks clarifiers etc.,	ses, effects of water
3	Water pollution (supply and treatment of water, purification of water removal, treatment of heavy water of city, treatment of industrial w	
4	Air pollution and control:Primary and Secondary Pollutants, Health with air pollutants, threshold limits, Green house effect and its impa- stability, temperature inversion Sources and effect of different air p particulate matter, oxides of carbon, oxides of nitrogen, oxides of su Depletion Ozone layer:Preliminary ideas of Air Pollution Control E cyclone separator, bag house, catalytic converter, scrubber	acts ,atmospheric ollutants- Suspended Ilphur, PAN. Smog,
5	Air pollution (specific air measurements, suspended particles, gases	3).
6	Air pollution (control, effect of air pollutants on human health)	partment
Re	ferences:	
1. I	K.B.Schnelle & C.A.Brown, Air Pollution Control Technology Hand	book,

Third Year

First Semester

Su	bject : Chemical Eng. Analysis l	Theoretical: 2 hr/wk	
Co	de: CHE311/1 st Semester	Practical: 2 hr/wk	
Cla	ass: 3 rd	Tutorial: 1 hr/wk	
Pr	e-requisite: None	Units: 3	
Co	urse Syllabus:		
1	1 st order differential equations (homogeneous, Solutions of first order differential equations b Solutions of general linear equations of second with constant Coefficients. Solution of homoge equations. Applications	y va <mark>rious</mark> method. I and hig <mark>her</mark> orders	
2	2 nd order differential equations (non-linear, line using D-operator).	ear and its solution	
3	Solution of differential equations in series by the Frobenious.	he method of	
4	Laplace Transform: Definition. Laplace transformed elementary functions. Sufficient conditions for Laplace transforms. Inverse Laplace transformed transforms of Derivatives. The unit step funct function. Some specialtheorems on Laplace transformed transforme	existence of ns. Laplace ion. Periodic	
Re	References:		
	 Jenson and Jeffery, Mathematical Methods in Mickley, Reid and Sherwood, Applied Mathe Engineering, Tata-McGraw-Hill 	ematics in Chemical	

Third Year

First Semester

Su	bject : Heat Transfer	Theoretical: 3 hr/wk
Co	ode: CHE312/1 st Semester	Practical: 2 hr/wk
Cl	ass: 3 rd	Tutorial: 1 hr/wk
Pr	e-requisite: None	Units: 3
Co	ourse Syllabus:	
1	Basic modes of heat transfer; Heat transfer by cond dimensional steady state heat conduction, Fourier's systems (cylinder and sphere)	
2	Thermal conductivity, Compound resistance in serie heat transfer analysis through extended surface;	es; Steady state
3	Unsteady state heat conduction with and without he	eat generation
4	Concept of thermal diffusivity; Concept of heat tran convective-conductive system, Critical thickness of	
5	One dimensional unsteady state heat conduction-se Lumped system analysis; Use of transient – temper	
6	Heat transfer by convection: Convection heat transf Forced convection in systems of simple geometrics	
7	Thermal boundary layer; Co-relation for heat transf internal flow & external flow, Momentum & heat tr	
8	Free convection: concept; Analysis of free convecti plate, Corrections of free convection over simple cy	
Re	ferences: Chemical Engineering	Department
1-1	Hollman J.P., Heat Transfer, McGraw Hill	
2	Kern D.Q., Process Heat Transfer, McGraw Hill.	

Third Year

First Semester

Su	bject : Mass Transfer Theoretical: 3	hr/wk	
Co	ode: CHE313/1 st Semester Practical: - h	r/wk	
Cla	ass: 3 rd Tutorial: 1 h	r/wk	
Pr	e-requisite: None Units: 3		
Со	ourse Syllabus:		
1	Basic mass transfer theories: diffusion of gases and liquids; diffusion through stagnant layer and equimolar counter diffusion		
2	Mass transfer between gas and liquid phases; two film and other theories, mass transfer coefficients.		
3	HTU and NTU concepts, Mass transfer coefficients. Continuous contact mass transfer; packed and spray column; gas absorption in packed column; types of absorption towers, height and diameter of towers, efficiency of absorption towers.		
4	Extraction (liquid-liquid), extraction calculations of partial solubility, extraction calculations of non-soluble liquids .		
Re	References: 1-C.J.Geankoplis, Transport Processes and Unit Operations, Prentice-Hall 2. T.K.Sherwood, R.L.Pigford and C.R.Wilke, Mass Transfer, McGraw-Hill, 3. R.E.Treybal, Mass-Transfer Operations, McGraw-Hill.		

Third Year

First Semester

Su	bject : Chemical Eng. Thermodynamics II Theoretical : 3 hr	/wk
Co	de: CHE314/1 st Semester Practical: - hr/w	' k
Cla	ass: 3 rd Tutorial: 1 hr/w	′ k
Pre	e-requisite: Chemical Eng. Thermodynamics I Units: 3	
Co	urse Syllabus:	
1	Solution thermodynamics: relationships among the thermodynamic properties for systems of variable composition; partial molar properties; fugacity and fugacity coefficients; fugacities in ideal solutions; property changes of mixing; activity and activity coefficients;	
2	Phase equilibria: nature and criteria of equilibrium; phase rule and Duhems theorem; vapour-liquid equilibrium calculations for miscible systems; Gibbs-Duhem equation. Chemical reaction equilibria: the reaction coordinate; criteria of equilibrium for chemical reactions; equilibrium constant; effect of temperature on equilibrium constants; phase rule and Duhems theorem for reacting systems.	
3	Thermodynamics of flow processes; conservation of mass and energy; mechanical energy balances; maximum velocity in pipe flow; metering and throttling processes; nozzles; compressors; ejectors.	
4	arnot refrigeration cycle; air-refrigeration cycle; vapour-compression cycles; comparison of refrigeration cycles absorption refrigeration, heat pump; liquefaction processes.	
References:		
 Smith J. M. & Van Ness H.V., Introduction to Chemical Engineering Thermodynamics. Narayanan K. V., A Textbook of Chemical Engineering Thermodynamics, 		

Third Year

First Semester

Su	bject : Engineering Materials Properties	Theoretical: 3 hr/wk
Code: CHE315/1 st Semester		Practical: 2 hr/wk
Cla	ass: 3 rd	Tutorial: - hr/wk
Pre-requisite: None Units: 3		Units: 3
Co	urse Syllabus:	
1	Crystalline structure	
2	Phase diagram	
3	Alloys of copper, aluminum and iron	
4	Plastics (polymers)	3
5	Properties and uses of polyethylene	
6	Ceramies	8.11
7	Electrochemical cell (electrochemical theory)	181
8	Crystalline deformations	0
9	Corrosion and its control	8//
	Practical tests of the resistance of materials to friction structure of metals .	n, crystalline
Re	ferences:	P.F.
1-Van Vlack, Elements of Material Science 2. Khanna O.P., A Text Book of Material Science & Metallurgy		

Third Year

First Semester

Su	bject : Water Technologies Theoretical: 2 hr/v	vk	
Co	Code: CHE317/1 st Semester Practical: - hr/wk		
Cl	Class: 3 rd Tutorial: - hr/wk		
Pr	Pre-requisite: None Units: 2		
Co	Course Syllabus:		
1	Water quality standards for drinking water, mineral water, boiler feed water and swimming pools. Water recycling and reuse, rain water harvesting. Water pollution control and water management.		
2	Water resources- Rainfall and runoff, ground water and surface waters. Quantity of water-Domestic water needs, Industrial demand, Institutional demand and Fire fighting demand.Quality of water- Impurities in water and their importance, water borne diseases. Water Analysis-Physical, Chemical and Biological analysis.		
3	Treatment technologies-Coagulation, flocculation and sedimentation. Usual coagulants, the jar test, flash mixers, flocculators, clarifiers and clariflocculators. Filtration- classification of filters, slow sand filters, rapid sand filters and pressure sand filters. Disinfection of water chlorination, ozonation and ultra-violet rays.		
4	Carbon adsorption, Desalination, Ion exchange and membrane processes. Turbidity removal, taste and dour control, iron and manganese removal and fluoride removal. Removal of hardness, removal of dissolved salts and nutrients. Dewatering and disposal of waste from water treatment plants.		
5	Description of methods of water purification and treatment. Fundamentals involved in Multi Stage Flash Distillation, reverse osmosis, electro dialysis etc		
6	Study of properties of water and aqueous solutions. Detailed discussion and analysis of design maintenance, energy requirements and economics of the major process of purification		
References: 1- Mark.J.Hammer & Mark.J.Hammer Jr., Water and Wastewater Technology, 2. W.Wesley Eckenfelder, Jr, Principles of water quality management,			

Third Year

First Semester

Su	bject : Petrochemical Engineering	Theoretical: 2 hr/wk	
Code: CHE316/1 st Semester		Practical: - hr/wk	
Cla	ass: 3 rd	Tutorial: - hr/wk	
Pr	Pre-requisite: None Units: 2		
Co	urse Syllabus:		
1	Production of the basic materials for the petrochemical	industry (olefins	
	and aromatics		
2	Petrochemicals from methane		
3	Ethylene derivatives		
4	Propylene derivatives	21384	
5	High molecular weight olefins derivatives	2 1	
6	Petrochemicals in benzol and zylenes	0	
7	Polymers production techniques	SI	
8	Thermoplastic		
9	Thermosit		
10	Industrial fibers		
11	Industrial rubber	8	
References:			
كيمياء وتكنولوجيا البوليمر للمؤلف د. كوركيس عبد ادم			
بوني	مقدمة في البتروكيمياويات للمؤلف دعماد عبد القادر الدبوني		

Third Year

Second Semester

Su	bject : Chemical Eng. Analysis II	Theoretical: 2 hr/wk
Code: CHE321/2 nd Semester Practi		Practical: - hr/wk
Class: 3 rd Tuto		Tutorial: 1 hr/wk
Pre-requisite: None Units: 3		Units: 3
Co	urse Syllabus:	
1	Mathematical modeling (application on chemica state and unsteady state systems).	al engineering steady
2	Error, Gamma, beta, and Bell functions	
3	Fourier Transform: Definition and properties. Fourier Integral, the limit of Fourier series, Inverse Fourier Transform.	
4	Finite differences (application on chemical engine multiple steps).	neering systems with
Re	ferences:	0
 Jenson and Jeffery, Mathematical Methods in Chemical Engineering, Mickley, Reid and Sherwood, Applied Mathematics in Chemical Engineering, Tata-McGraw-Hill. 		

Chemical Engineering Department

BASRAM

Third Year

Second Semester Theoretical: 3 hr/wk Subject : Process Heat Transfer Code: CHE322/2nd Semester Practical: - hr/wk Class: 3rd Tutorial: 1 hr/wk Units: 3 **Pre-requisite:** None Course Syllabus: Heat transfer of fluids with phase change: Introduction; Dropwise and film-type ondensation; 1 Film condensation on vertical surface, Nusselt equation; Condensation outside horizontal and vertical tube bank; Heat transfer to boiling liquid, 2 Analysis of boiling curve, Nucleate boiling mechanism Experimental relations of heat transfer by forced convection inside pipes 3 4 Flow through cylindrical and spherical bodies, Flow through bundle of tubes Radiation heat transfer: Introduction; Black body radiation, Plank's distribution law, 5 Monochromatic emissive power; Wein's displacement law; Kirchoff's Law; Emissivity of Solids, Concept of gray body; Radiation between surfaces, Concept of View Factor, Radiation shield; Absorption and emission in a gaseous medium. Heat Exchanger: Classification; Construction of shell and tube heat exchanger; LMTD, 6 LMTD, NTU method correction factor, Dirt factor, Individual and overall heat transfer coefficient; Design procedure 7 of shell and tube heat exchanger. Evaporation: Classification; Capacity, Steam economy; Boiling point elevation (Duhring rule); 8 Material and energy balance of single effect evaporator; Design procedure of single effect 9 evaporator; Introduction to multiple effect evaporator: Forward feed, Backward feed, Engineering lengviment 1emical References:

1- Hollman J.P., Heat Transfer, McGraw Hill

2. Kern D.Q., Process Heat Transfer, McGraw Hill

Third Year

Second Semester

Su	bject : Mass Transfer II	Theoretical: 3 hr/wk
Co	Code: CHE323/2 nd Semester Practical: - I	
Class: 3 rd Tutorial:		Tutorial: 1 hr/wk
Pro	e-requisite: None	Units: 3
Co	ourse Syllabus:	
1	Distill <mark>ia</mark> tion, McCade-Thicle method, Lewis-Sorel method, Lewis-Sorel method, Lewis-Sorel method, Market Mar	nethod, batch
2	Multicomponent distillation: bubble and dewpoint ca multicomponent systems; simplified methods for calc , flash distillation, continuous rectification, key comp minimum number of plates, minimum reflux ratio	culation of stages
3	Humidification and cooling and drying towers, steps	of drying
4	Azeotropic and Extractive distillation,	181
5	Evaporation, types of evaporators, single and multiple evaporators, material and energy balances in the evap	
Re	ferences:	
1-C.J.Geankoplis, Transport Processes and Unit Operations, Prentice-Hall 2. T.K.Sherwood, R.L.Pigford and C.R.Wilke, Mass Transfer, McGraw-Hill, 3. R.E.Treybal, Mass-Transfer Operations, McGraw-Hill.		

Third Year

Second Semester

Sub	oject : Corrosion Engineering	Theoretical: 2 hr/wk
	de: CHE324/2 nd Semester	Practical: - hr/wk
Cla	ss: 3 rd	Tutorial: - hr/wk
Pre	-requisite: None	Units: 2
Cot	irse Syllabus:	
1	Introduction and Scope: Corrosion: Definition, wet and dry electro-chemical principles and aspects of corrosion, Faradays law specific resistance, transport no. mobility etc. Various forms of cor of corrosion. Rate expressions. Thermodynamic aspects of potential, Narnst equation for electrode potential. EMF series, over Nernst equation to corrosion reactions, calculation of corrosion rates	vs, specificconduction, rosion, a brief review corrosion, equilibrium rvoltage, application of
2	Polarisation and corrosion potentials: Reference electrodes for corrosion measurements, types of polarisation, concentration, activation and resistance polarisations, Tafel equation, Tafel constant, Evans Diagrams. Anodic control, cathodic control, mixed control. Pourbaix-diagram for Fe -H2O system.	
3	Galvanic corrosion, uniform attack, pitting corrosion, dezincificati fretting corrosion, intergranular and stress corrosion cracking.Reme above.	
4	High temperature oxidation, Pilling Bedworth ratio, mechan corrosion, testing procedures and evaluation: Corrosion of iron a media, Effect of velocity, temperature and composition of media	
5	Prevention techniques, modification of the material by alloyin treatment. Chemical and Mechanical methods of surface the metallic, non-metallic linings, cathodic protection, passivity and ano	reatment coatings -
Refe	erences:	1.5
1. Fo 2. Jo	ontana, M.G., "Corrosion Engineering", McGraw-Hill. ones, D.A., "Principal and Protection of Corrosion", Prentice-Hall	

Third Year

Sul	oject : Engineering Economics	Theoretical: 2 hr/wk
Co	de: CHE325/2 nd Semester	Practical: - hr/wk
Class: 3 rd		Tutorial: - hr/wk
Pre	Pre-requisite: None Units: 2	
Co	urse Syllabus:	
1	Estimation of cost of the industrial projects	
2	Factors affecting the production cost and investment	
3	Capital investment	
4	Cost index	2
5	Calculation of capital investment	2 1000
6	Profit and cost on investment	S
7	Types of profits-payment	
8	Depreciation (types, methods of calculation)	E I
9	Optimum design	~
10	Rate of optimum production for evert production unit production that gives highest profit per unit of time	, optimum rate
11	Packed and plate towers and the cost of the mass heat equipments	t transfer
Re	Ferences:	U
 Jelen F.C., Cost and Optimization Engineering, McGraw Hill Davies G.S., Process Engineering Economics, Chem. Eng. Ed. Dev. Peters & Timmerhaus, Plant Design & Economics for Chemical Engineering, 		

Third Year

Second Semester

Su	bject : Chemical Industries	Theoretical: 2 hr/wk
Co	de: CHE326/2 nd Semester	Practical: - hr/wk
Class: 3 rd Tutoria		Tutorial: - hr/wk
Pro	e-requisite: None	Units: 2
Co	urse Syllab <mark>u</mark> s:	
1	Treatment of industrial water (general properties of water for the c temporary and permenant hardness, calculations used in the detern and negative ions, preciptaion, test of water, water extraction from properties in the industrial uses, treatments in boilers heat exchange	nination of the positive rivers and seas, water
2	Industrial carbon (types, properties, chemical absorption processes).	
3	Ammonia- Source of hydrogen; methods of obtaining hydrogen from different sources, source of nitrogen- liquefaction of air and distillation of liquid air. Synthesis of ammonia- physico chemical principles, catalyst for synthesis of ammonia, process flow sheet and sequence of operation, details of major equipments.	
4	Urea - Raw materials, manufacturing process with flow sheet, sequence of operat details.	tion, major equipments
5	<i>Hydrochloric Acid:</i> Raw materials, principles of manufacture, flow-sheet and sequence of operation, major engineering problems, uses	
6	sulfuric acid: sulfuric acid production process, Contact process, Physico-chemical principles and general theory of contact reaction with thermodynamic and reaction engineering aspects, different types of catalyst – preparation methodology and relative merits, flow-sheet and sequence of operation, details of major equipments, advancement of process technology and major engineering problems, DCDA process, uses	
7	Nitric Acid: Raw materials, Ostwald Process – physico-chemical principles, catalyst, process flow sheet and sequence of operation, details of major equipments, uses.	
8	Cement: Chemical composition of Portland cement, raw materials, dry and wet p cement clinker, setting and hardening of cement.	rocess for manufacturing
Ref	erences:	Sec. 1
1- C	Themical process industries, by R. Norris Shreve.	

Third Year

Second Semester

Subject : Reactor DesignTheoretical: 3		Theoretical: 3 hr/wk
Code: CHE327/2 nd Semester Practical: - hr		Practical: - hr/wk
Class: 3 rd Tutorial: 1 hr		Tutorial: 1 hr/wk
Pr	e-requisite: None	Units: 3
Co	urse Syllabus:	11
1	Thermodynamic of chemical reactions	
2	Reaction kinetics (homogeneous reactions, equation rate of reaction on concentration and temperature information from constant volume batch reactor, value batch reactor, how to reach to the rate equation) 3 I (single ideal reactor.	, an <mark>alys</mark> is of arying volume,
3	Ideal batch reactor, steady state continuous stirred reactor, plug flow reactor).	
4	Operation of reactors at different temperatures (adiabatic of batch reactor, exothermic reactions in continuous stirred reactor, adiabatic and non-adiabatic operation of plug flow reactor).	
References:		
 Levenspiel O., Chemical Reaction Engineering, John Wiley Fogler H.S., Elements of Chemical Reaction Engineering, Prentice Hall Smith J.M., Chemical Engineering Kinetics, McGraw Hill 		

Fourth Year

First Semester

Subject : Engineering Project I	Theoretical: - hr/wk
Code: E411/1 st Semester	Practical: 2 hr/wk
Class: 4 th	Tutorial: - hr/wk
Pre-requisite: None	Units: 2
Course Syllabus:	

This is an independent study under the supervision of department members. Each student is expected to do research trying to explore and define a potential study area suitable for a senior design project. A specific engineering problem must then be identified from within the selected study area. Results from this study must be documented and submitted in the form of a design project proposal

Fourth Year

First Semester

Su	bject : Unit Operation	Theoretical: 3 hr/wk
Code: CH E412/1 st Semester		Practical: 2 hr/wk
Cla	ass: 4 th	Tutorial: 1 hr/wk
Pre-requisite: None		Units: 4
Co	urse Syllabus:	
1	Transfer of heat, mass and momentum	
2	Reynolds analogy	
3	Non Newtonian fluids	
4	Mixing	3
5	Fluid flow through packed columns	2.000
6	Fluidization	2.11
7	Filtration	181
8	Flow of particles through fluids	E.
9	Sedimentation	8
References:		
1- Coulsun, Chemical Eng. Vol. 2		
2- Smith, unit operations for chemical engineering.		

Fourth Year

<u>First Semester</u>

Su	bject : Process Dynamics	Theoretical: 3 hr/wk
Code: CHE413/1 st Sem <mark>es</mark> ter		Practical: - hr/wk
Class: 4 th		Tutorial: 1 hr/wk
Pr	e-requisite <mark>:</mark> None	Units: 3
Co	ourse Syllabus:	
1	Laplace transform, transforming of nonlinear equations effective functions, 1 st order response	ons to linear,
2	Calculation of time elapsed, steady state coefficient, theorem	final value
3	Total time delay	1
4	Response of 1 st order systems (reacted and un-reacted system (characteristics and response).	d), 2 nd order
5	Closed loop systems, transfer function and flow diag	ram .
6	Transfer of signals between the elements of system, s control and measuring devices.	symbols of
7	Air control valve	
Re	ferences:	R.P.
 Coughanowr and Koppel, Process Systems Analysis and Control, Stephnopolous, Chemical Process Control W.L.Luyben, Process Modeling, Simulation and Control for Chemical Engineers, McGraw-Hill. 		

Fourth Year

First Semester

Su	bject : Equipments Design	Theoretical: 2 hr/wk	
Co	Code: CHE414/1 st Semester Practical: - hr/wk		
Cla	Class: 4 th Tutorial: 1 hr/wk		
Pro	Pre-requisite: None Units: 2		
Co	urse Syllabus:		
1	Introduction to Mechanical Aspects of Chemical equ Design Preliminaries-Design of thick walled high pre Design of Cylindrical and spherical vessels under inte Design ofheads and closures-Design of tall vessels-P detailed drawing for some chemical process equipme	essure vessels- ernal pressure- reparation of	
2	Pumps and piping systems, pipe fittings, valves, stear of metal type of pipes, pumps characteristics and dat diameter, types of pumps, operating characteristics of pumps.	a basis, optimum	
3	Vessels and tanks types, flash, tanks for liquefied gas designing vessels, stress considerations, design of ve design of pressure vessel, foundation.		
4	Mechanical design of process equipment: tall column supports & accessories, etc. Mechanical design of nor Design of storage tanks for Volatile and Nonvolatile	standard flange.	
1-] Vo	ferences: E. Ludwig, Applied Process Design for Chemical & Po I I, II, II, Gulf Publication, J.M.Coulson & J.F.Richardson, Chemical Engineering		

Fourth Year

First Semester

Sul	oject : Petroleum Refinery	Theoretical: 3 hr/wk
Co	Code: CHE416/1 st Semester Practical: - hr/	
Cla	Class: 4 th Tutorial: 1 hr/w	
Pre	Pre-requisite: None Units: 3	
Co	urse Syllabus:	11
1	Crude oils and their chemical composition	
2	Physical and chemical characteristics of crude oil an	nd its products
3	Evaluation of crude oil	2 4
4	Preparation of crude oil for refining	1.1
5	Crude oil refining (atmospheric and vacuum distillat the distillation unit).	tion, basic unit in
References:		
	1-Nelson, W.L., "Petroleum refining engineering", McGraw-Hill Book Co.	
	2. Bhaskara Rao, B.K., Modern Petroleum Refining Processes", Oxford-IBH	
Pul	Publishing Co.	

Fourth Year

First Semester

Su	bject : Numerical Methods	Theoretical: 2 hr/wk
Co	Code: CHE417/1 st Semester Practical: 2 hr/w	
Cla	Class: 4 th Tutorial: - hr/wk	
Pr	Pre-requisite: None Units: 3	
Co	ourse Syllabus:	
1	Solution of Non-linear equations:Bisection method, New Secant method, Modified Newton-Raphson method for mu in thermodynamic property calculation, bubble point and c Finding of multiple roots of a polynomial. Solution of a se	ultiple roots - Application dew point calculation.
2	Solution of simultaneous linear equations: Gauss elimina Jordon Method -Pivoting and illconditioning,Condition nu method - Jacobi iteration, Gauss-Seidel Method. SOR met	umber o <mark>f a</mark> matrix. Iterative
3	Numerical Solution of ODE: Initial and boundary value p ADAMS-BASHFORTH Techniques like Euler's Method, 2nd and fourth order methods. Implicit ADAMS-MOULT Implicit Euler.	ADAMS-BASHFORTH
4	Numerical differentiation and integration and Taylo's s Method(2nd, 3rd and 4th order), Euler's predictor-corrector finite difference method (forward,backward and central dif analysis of ODES of Euler methods, Runge-Kutta methods	or method (Heun' method)- fferences), Stability
5	Interpolation (Lagrange method, Newton Niefel)	
Ret	 ferences: 1- Hanna, O.T. and O.C. Sandal, , Computation Methods in 2- Davis M. E., "Numerical Methods and Modeling for Ch York, 3- Mathew J.H., Numerical Methods for Mathematics, Science 	nemical Engineers", Wiley, New

Fourth Year

First Semester

Su	Subject : Reactor Design II Theoretical: 3 hr/		
Co	Code: CHE415/1 st Semester Practical: - hr/wk		
Cla	Class: 4 th Tutorial: 1 hr/wk		
Pr	Pre-requisite: None Units: 3		
Co	urse Syllabus:		
1	1 Design of single reaction reactors (system of single reactor, connection of plug flow reactors in series or in parallel, connection of continuous stirred reactors with the same or different volumes in series, connection of different types of reactors in series		
2	2 Recycle reactor		
3	Self catalytic reactor	151	
4	Introduction to design of reactors with heteroge analysis of the reactor (solid-fluid), height of the of catalyst.		
1-I 2. I	eferences: Levenspiel O., Chemical Reaction Engineering, J Fogler H.S., Elements of Chemical Reaction Eng Smith J.M., Chemical Engineering Kinetics, Mc	gineering, Prentice Hall	

Fourth Year

Second Semester

Subject : Engineering Project ||

Code: E421/2nd Semester

Class: 4th

Pre-requisite: None

Theoretical: - hr/wk

Practical: 2 hr/wk

Tutorial: - hr/wk

Units: 2

Course Syllabus:

This is an independent study under the supervision of department members. Each student is expected to do research trying to explore and define a potential study area suitable for a senior design project. A specific engineering problem must then be identified from within the selected study area. Results from this study must be documented and submitted in the form of a design project proposal

Fourth Year

Subject : Transport PhenomenaTheoretical: 3 hr/wk			
Co	Code: CHE423/2 nd Semester Practical: - hr/wk		
Cla	Class: 4 th Tutorial: 1 hr/wk		
Pre	Pre-requisite: None Units: 3		
Course Syllabus:			
1	Vapour liquid equilibrium; Raoult's law; Relativ and maximum boiling mixtures; enthalpy concern binary systems; Flash, Differential and Steam Dis Azeotropicand Extractive Distillation	tration diagrams for	
2			
3	Absorption- Equilibrium, co-current operation, counter current multistage operation, dilute gas mixtures, Multicomponent absorption, tray efficiency;		
4	Liquid-liquid Extraction-, choice of solvent, equilibria on triangular coordinates, single stage and multistagesingle cross current extraction, continuous counter current multistage extraction, insoluble liquids;		
5	Solid-liquid Extraction- Method of operation, Sh systems, equilibrium curve, single stage and mult current leaching, multistage counter current leach and triangular method,	tistage single cross	
6	Adsorption- Adsorbents, adsorption equilibria, ad solutions, single stage and multistage single cros	-	

multistage counter current operation using Freundlich equation for equilibria,

References:

- 1- Henley, E.J., Equiibrium Stage Separation Operations in Chemical Engineering,
- 2- Smith, unit operations for chemical engineering

Fourth Year

Subject : Process Control and Instrumentation Theoretical: 3 hr/v		
Co	Code: CHE424/2 nd Semester Practical: 2 hr/w	
Cla	Class: 4 th Tutorial: 1 hr/w	
Pre	Pre-requisite: None Units: 4	
Co	urse Syllabus:	1344
1	Analysis and design of advanced control systems: co with large dead time or inverse response; multiple-lo systems; feedforward and ratio control; adaptive and control.	op control
2	Optimum control by Zegler-Nickes method	SI
3	Concept of stability; stability testing. Frequency resp Bode diagrams; Nyquist plots; Bode and Nyquist stal control system design by frequency response analysis	bility criteria;
4	Control of some chemical processes Design of control multivariable processes: synthesis of alternative cont configurations for multiple-input and multiple-output interaction and decoupling of control loops	ol systems for rol
5 6	Introduction to the control by computer	
U	Measuring devices of temperature, pressure, concent flow Practical dynamic response, pressure measurem value, analysis of frequency response, three phase co	nent, air control

control of acidity and temperature.

References:

- 1. Coughanowr and Koppel, Process Systems Analysis and Control,
- 2. Stephnopolous, Chemical Process Control
- 3. W.L.Luyben, Process Modeling, Simulation and Control for Chemical Engineers, McGraw-Hill.

Fourth Year

Su	Subject : Equipments Design Theoretical: 2 hr/	
Co	Code: CHE425/2 nd Semester Practical: - h	
Class: 4 th Tutorial: 1		Tutorial: 1 hr/wk
Pr	e-req <mark>u</mark> isite: None	Units: 2
Co	urse Syllabus:	21719
1	Heat transfer equipments types of heat exapplication, capacity and design of the exact the exchangers, furnaces, convection and fuel, layout of furnaces, types of steam be	changers, characteristics of radiation places, types of
2	Mass transfer equipments types of colum columns, types of plates and packing, des pressure in columns	
3	Reactor design	13
Re	References:	
 1- E. Ludwig, Applied Process Design for Chemical & Petrochemical Plants, Vol I, II, II, Gulf Publication, 2- J.M.Coulson & J.F.Richardson, Chemical Engineering, Vol.6, 		

Fourth Year

Sub	Subject : Catalytic Reactor Design Theoretical: 2 hr/wk		
Coc	Code: CHE426/2 nd Semester Practical: - hr/wk		
Cla	Class: 4 th Tutorial: - hr/wk		
Pre	Pre-requisite: None Units: 2		
Cou	urse Syllabus:		
1	Heterogeneous processes; Catalysis and adsorption; Class	ification and	
	preparation of catalysts; Promoters and inhibitors		
2	Catalyst characterization: Surface area and pore size distri		
	to other characterization techniques (XRD, electron micro		
3	spectroscopy, thermal analysis, desorption spectroscopy.)		
5	Rate equations of fluid-solid catalytic reactions; Hougen-	-	
	law models; Procurement and analysis of kinetic data; Kin	netics of catalyst	
4	deactivation and reg <mark>eneration.</mark>	non isothermal	
-	Reaction and diffusion in porous catalysts; Isothermal and		
	effectiveness factors; Effect of intra-phase transport on yield, selectivity and poisoning; Global reaction rate.		
5	Design of catalytic reactors: Isothermal and adiabatic fixe	d bed reactors	
	Staged adiabatic reactors; Non-isothermal non-adiabatic f		
	Fluidized bed reactors; slurry reactors; Trickle bed reactor		
	novel configurations- radial flow reactors, honey-comb re		
	reactors		
6	⁶ Models for fluid-solid non-catalytic reactions; Controlling mechanisms and		
	global reaction rates; Reactor design for fluid solid reaction	ons including	
	fluidized bed reactors with and without elutriation. Gas-lie	quid and liquid-	
	liquid reactions; Rate equations based on film theory; Rea	ctor design for	
	instantaneous reactions and slow reactions.		
References:			
1-Levenspiel O., Chemical Reaction Engineering, John Wiley			
2. F	2. Fogler H.S., Elements of Chemical Reaction Engineering, Prentice Hall		

Fourth Year

Su	bject : Petroleum Refinery	Theoretical: 2 hr/wk
Code: CHE427/2 nd Semester Practical: 2 hr/w		Practical: 2 hr/wk
Cla	Class: 4 th Tutorial: 1 hr/w	
Pr	e-requisite: None	Units: 4
Co	ourse Syllabus:	
1	Introduction. Origin, formation and composition Evaluation of crude oils. Refinery products and petroleum products. Fractionation of petroleum. (cracking, coking, steam cracking).	their uses. Analysis of
2	Catalytic processes in oil refineries (catalytic cr cracking, desulphurization by hydrogen, reform polymerization, steam reforming)	
3	Conventional chemical treatment of refinery prosulfuric acid, treatment with earth).	oducts (treatment with
4	Lubricating oils (properties and needs, production removal of asphalt by solvents, extraction by fu	
5	Production of different types of fuels and oil pro solvents car and aeroplane gasoline, jet fuel, ker wax).Practical density, flash point, viscosity, an content, water content, carbon content, salt cont	rosene, diesel, asphalt, iline point, sulfur
Re	ferences:	I
2.]	Nelson, W.L., "Petroleum refining engineering", 1 Bhaskara Rao, B.K., Modern Petroleum Refining blishing Co.	

Fourth Year

Second Semester

Subject : Optimization and Simulation

Code: CHE428/2nd Semester

Class: 4th

Pre-requisite: None

Course Syllabus:

Theoretical: 2 hr/wk

Practical: 2 hr/wk

Tutorial: - hr/wk

Units: 3

1	Nature and organisation of optimisation problems - scope and hierarchy of optimisation - typical applications of optimisation - essential features of optimisation problems - objective function - investment costs and operating costs in objective function - optimising profitability- constraints - internal and external constraints - formulation of optimisation problems -typical examples - nature of functions and their representation - continuous functions - discrete functions - unimodal functions - convex and concave functions - necessary and sufficient conditions for optimum of unconstrained functions.	
2	Analytical method necessary and sufficient conditions for optimum in single and multi- variable unconstrained and constrained problem	
3	OPTIMIZATION TECHNIQUES Formulation of a LPP - Graphical Method - Simplex method - duality - dual simplex method – sensitivity analysis, transportation and assignment problems, traveling salesman problem - Lagrange multipliers and Kuhn-Tucker conditions - quadratic programming problem - Dynamic Programming - Integer Linear	
4	Numerical methods for unconstrained functions - one dimensional search - gradient-free search with fixed step size - gradient search with acceleration - Newton's method - Quasi- Newton method - dichotomous search - fibonacci search - golden-section method – quadratic interpolation - numerical methods for unconstrained multivariable optimisation – univariate search - simplex method - Powell's method - method of steepest descent - Fletcher-Reeves conjugate - gradient method - Newton's method	
5	Classification of mathematical models. Fundamental features of models. General methods of solution. Application to problems in staged operations, fluid mechanics, heat transfer and reactor design. Parameter estimation.	
6	Dynamic Simulations Batch reactor, Gravity flow tank, Three CSTR in series, Non-isothermal CSTR .Chemical Reactor Simulation: Modeling and simulation of isothermal and non-isothermal operation of batch reactor, isothermal and non isothermal CSTR and Semi-batch reactor	
1. Lu Engii	References: 1. Luyben W. L., "Process Modeling Simulation and Control for Chemical Engineers", McGraw Hill, 1988.	
2. Ed	gar T.F. & Himmelblau D.M., Optimization of Chemical Processes,	

